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Abstract: Emergency medical services (EMS) provide crucial emergency assistance and ambulatory
services. One key measurement of EMS’s quality of service is their ambulances’ response time (ART),
which generally refers to the period between EMS notification and the moment an ambulance arrives
on the scene. Due to many victims requiring care within adequate time (e.g., cardiac arrest), improv-
ing ARTs is vital. This paper proposes to predict ARTs using machine-learning (ML) techniques,
which could be used as a decision-support system by EMS to allow a dynamic selection of ambulance
dispatch centers. However, one well-known predictor of ART is the location of the emergency (e.g.,
if it is urban or rural areas), which is sensitive data because it can reveal who received care and for
which reason. Thus, we considered the ‘input perturbation’ setting in the privacy-preserving ML
literature, which allows EMS to sanitize each location data independently and, hence, ML models
are trained only with sanitized data. In this paper, geo-indistinguishability was applied to sanitize
each emergency location data, which is a state-of-the-art formal notion based on differential privacy.
To validate our proposals, we used retrospective data of an EMS in France, namely Departmental
Fire and Rescue Service of Doubs, and publicly available data (e.g., weather and traffic data). As
shown in the results, the sanitization of location data and the perturbation of its associated features
(e.g., city, distance) had no considerable impact on predicting ARTs. With these findings, EMSs may
prefer using and/or sharing sanitized datasets to avoid possible data leakages, membership inference
attacks, or data reconstructions, for example.

Keywords: emergency medical services; emergency medicine; decision-support system; pre-hospital
emergency care; ambulance response time; machine learning; geo-indistinguishability; differential
privacy; privacy-preserving machine learning; input perturbation

1. Introduction

Ambulance response time (ART) is a key component for evaluating pre-hospital
emergency medical services (EMS) operations. ART refers to the period between the EMS
notification and the moment an ambulance arrives at the emergency scene [1,2], and it
is normally divided into two periods: the pre-travel delay, from the notification to the
ambulance dispatch, and the travel time, from the ambulance dispatch to arrival on-scene.
In many urgent situations (e.g., cardiovascular emergencies, trauma, or respiratory distress),
the victims need first-aid treatment within adequate time to increase survival rate [1–6]
and, hence, improving ART is vital.

In many parts of the world, such as France, fire departments are responsible for
many critical situations, including fires, hazards, severe storms, floods, as well as non-
urgent and urgent EMS calls (e.g., traffic accidents, drowning). In this paper, we analyzed
EMS operations of the Departmental Fire and Rescue Service of Doubs (SDIS 25), which
has 71 centers currently deployed across the Doubs region in France to attend to its
population. As noticed in [7,8], the SDIS 25 and fire departments in general, have been
facing a continuous increase in the number of interventions over the years, which may
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have adverse consequences on ARTs. For instance, the pre-travel delay directly affects
ARTs if there is a lack of human and material resources when a call is received. This means,
if there is a lack of firefighters, ambulances, or both, ART may be higher than allowed and,
hence, a breakdown in the SDIS 25 service occurs [9]. This inability to assist within the
time limits impacts negatively both EMS and victims because the safety of a certain area or
population will be at risk. Thus, there is a need for an intelligent ART prediction system,
which can assist SDIS 25 (and EMS, in general) in the dispatching of ambulances.

Indeed, predicting ART is useful for many reasons. First, it can help in choosing the
best center to provide the ambulance. At present, for SDIS 25, each city in the department
is associated with an ordered list of centers with the needed engine to respond, so that the
first centers are the most likely to provide a rapid and adequate response. This structure
is mainly defined by the administrative policies of the organization, which considers,
for example, the operational load (number of interventions) that the city represents, and
according to this, the necessary armament that its nearest center should have, as well
as the shortest distances and times between the centers and the cities. However, this
structure varies very little over time, for example, when there is a creation or territorial
modification of a city. Although it takes into account the actual travel distance (considering
street structures, highways, etc.), it does not take into account the real-time state of road
traffic, weather conditions, etc. Predicting ART would therefore make it possible to move
from static center scheduling to dynamic scheduling. It would also make it possible to
estimate the pre-travel delay partially and to see in advance whether, at a given moment, a
center is at risk of running out of ambulances. In other words, it enables the anticipation
of breakdowns and the redeployment of resources. Lastly, in the long term, it can be an
element of a simulator to determine the evolution of response time and breakdowns during
the creation or relocation of a center, the modification of resources by the center, etc.

One important factor of ART is the location of the intervention [2,3,10–12], e.g., in dense
urban areas, the distance may be short, but the travel time may be longer due to traffic
congestion. On the other hand, travel distance and travel time may be longer for rural areas.
In other words, the location information is of great importance for the prediction of travel
time and, naturally, ART [10,12]. However, the location of an emergency is also regarded
as sensitive data because it can reveal who received care and for which reason. For example,
by knowing that one intervention took place in front of the house of a debilitated person,
attackers with auxiliary information may accurately infer that this person received care
and (mis)use this information for their own good. Indeed, location privacy is an emerging
and active research topic in the literature [13–15] as publicly exposing users’ location
raises major privacy issues. A common way to achieve location privacy is by applying a
location obfuscation mechanism. In [15], the authors proposed geo-indistinguishability (GI),
which is based on the state-of-the-art differential privacy (DP) [16] model, to protect the
location privacy of users. GI has received considerable attention due to its effectiveness
and simplicity of implementation (e.g., Location Guard [17]).

In this paper, we propose to sanitize, independently, each emergency location data
with GI before training any ML techniques to predict ARTs to protect the ML model against,
e.g., membership inference attacks and data reconstruction attacks [18,19]. In our context,
besides the own location, with the exact coordinates of both SDIS 25 centers and the emer-
gency scenes, one can retrieve important features such as the distance and estimated travel
time. However, if the location is sanitized via GI, many other explanatory variables (e.g.,
distance, travel time, city) would be ’perturbed’ too. In the privacy-preserving ML litera-
ture, training ML models with sanitized data is common practice [7,20–25], which is also
known as input perturbation [26]. In contrast to objective [27] and gradient [28] perturbation
settings, input perturbation is the easiest method to apply, and it is independent of any ML
and post-processing techniques. We also remark that input perturbation is in accordance
with real-world applications where EMS would only use and/or share sanitized data with
third parties to train and develop ML-based decision-support systems.

To summarize, this paper proposes the following contributions:
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• Recognize the most influential variables when building accurate ML-based models to
predict ART. This would allow other EMS to collect these variables and recreate our
methodology or develop their own taking into account their policies.

• Evaluate the effectiveness of several values of ε (i.e., the privacy budget) to sanitize
emergency location data with GI and train ML-based models to predict ART. To the au-
thor’s knowledge, this is the first work to assess the impact of geo-indistinguishability
on sanitizing the location of emergency scenes when training the ML model for such an
important task. Although predicting ART is a means to allow EMS to save more lives,
we notice that it is also possible to do so while preserving the victims’ location privacy.

Outline: The remainder of this paper is organized as follows. In Section 2, we
describe the material and methods used in this work, i.e., the geo-indistinguishability
privacy model, the data presentation (context, collection, and analysis), the sanitization of
emergency scenes with GI, the ML models, and the experimental setup. In Section 3, we
present the results of our experiments and our discussion. Lastly, in Section 4, we present
the concluding remarks and future directions.

2. Materials and Methods

In this section, we revise the geo-indistinguishability privacy model (Section 2.1), we
provide a description of the processing of interventions by SDIS 25 (Section 2.2), the data
collection process (Section 2.3), the analysis of SDIS 25 ARTs (Section 2.4), the GI-based
sanitization of emergency location data (Section 2.5), the ML models used for predicting
ARTs (Section 2.6), and the experimental setup (Section 2.7).

2.1. Geo-Indistinguishability

Differential privacy [16] has been accepted as the de facto standard for data privacy.
DP was developed in the area of statistical databases, but it is now applied to several fields.
Furthermore, DP has also been extended to a local model (a.k.a. LDP [26]) in which users
sanitize their data before sending it to the server. Although DP is well-suited to the case of
trusted curators, with LDP, users do not need to trust the curator.

Geo-indistinguishability [15] is based on a generalization of DP developed in [29] and
has been proposed for preserving location privacy without the need for a trusted curator
(e.g., a malicious location-based service – LBSs). A mechanism satisfies ε-GI if for any two
locations x1 and x2 within a radius r, the output y of them is (ε, r)-geo-indistinguishable if
we have:

Pr(y|x1)

Pr(y|x2)
≤ eεr, ∀r > 0, ∀y, ∀x1, x2 : d(x1, x2) ≤ r.

Intuitively, this means that for any point x2 within a radius r from x1, GI forces the
corresponding distributions to be at most l = εr distant. In other words, the level of
distinguishability l increases with r, e.g., an attacker can distinguish that the user is in Paris
rather than London but can hardly (controlled by ε) determine the user’s exact location.
Although both GI and DP use the notation of ε to refer to the privacy budget, they cannot
be compared directly because ε in GI contains the unit of measurement (e.g., meters).

On the continuous plane (as we consider in this paper), an intuitive polar Laplace
mechanism has been proposed in [15] to achieve GI, which is briefly described in the
following. Rather than reporting the user’s true location x ∈ R2, we report a point y ∈ R2

generated randomly according to Dε(y) = ε2

2π e−εd2(x,y). Algorithm 1 shows the pseudocode
of the polar Laplace mechanism in the continuous plane. More specifically, the noise is
drawn by first transforming the true location x to polar coordinates. Then, the angle θ is
drawn randomly between [0, 2π) (line 3), and the distance r is drawn from C−1

ε (p) (line 5),
which is calculated using the negative branch W−1 of the Lambert W function. Finally, the
generated distance and angle are added to the original location.



Math. Comput. Appl. 2021, 26, 56 4 of 17

Algorithm 1 Polar Laplace mechanism in continuous plane [15]

1: Input: ε > 0, real location x ∈ R2.
2: Output: sanitized location y ∈ R2.
3: Draw θ uniformly in [0, 2π)
4: Draw p uniformly in [0, 1)
5: Set r = C−1

ε (p) = − 1
ε

(
W−1

(
p−1

e

)
+ 1
)

6: Return: y = x + 〈r cos (θ), r sin (θ)〉

2.2. Process Flow Description

The Departmental Fire and Rescue Service of Doubs currently has 71 centers deployed
throughout the region of Doubs, France, serving a population of around 540,000 people. The
focus of this paper is on interventions with victims that were further transported to hospitals.
In these interventions, there was a need for an emergency and victim assistance vehicle (a.k.a.
Véhicule de Secours et d’Assistance aux Victimes - VSAV). VSAVs are equipped with
adequate material and personnel for first-aid treatment in urgent situations. In this paper,
we interchangeably use the term ’ambulance’ when referring to VSAV.

The process of an intervention is briefly described in the following. First, an emergency
call is received and treated by an operator. Next, the adequate crew/engine is notified (i.e.,
the starting date—SDate). Once the sufficient armament is gathered, the ambulance goes
to the emergency scene. Upon arriving on-scene, the crew uses a mechanical system to
report their arrival (i.e., the arrival date—ADate). We focus on the ART period, which is
calculated as: ART = ADate− SDate.

The operation process to decide the adequate SDIS 25 center to attend the intervention
depends on the exact location of the intervention. As stated previously, there is a city, a
district, and a zone that jointly define a list of priority centers, which are responsible for the
call. The reason for such a list is because a single center may not have sufficient resources
at time SDate to attend an intervention. In this case, if the first center of the list does not
have sufficient resources, another center(s) would be in charge of the call. Additionally,
many situations may generate several victims (e.g., traffic accidents, floods). In these cases,
a single intervention can require more than one ambulance, which can come from different
centers depending on the availability of resources. This means different ARTs for the same
intervention and, therefore, we focus on each ambulance in our analysis and predictions.

In addition, although in some countries the reason of the emergency may require a
recommended ART [30], for SDIS 25, ART depends on the Zone as detailed in [9]. There
are three zones: Z1 refers to urban areas, Z2 refers to semi-urban areas, and Z3 refers to
rural ones. Therefore, SDIS 25 ambulances should arrive on-scene with ART ≤ 10 minutes
(min) on Z1 and with ART ≤ 25 min on Z2 and Z3, i.e., including the pre-travel delay
(gathering armament) and travel time. If these time limits are not reached, a breakdown in
SDIS 25 services is generated [9]. The victim state may also be impacted negatively with
high ARTs [1,5]. Lastly, SDIS 25 may also help other EMS outside the Doubs region, and in
this case, there is no pre-defined ART limit by SDIS 25.

2.3. Data Collection

We used retrospective data of EMS operations recorded by SDIS 25. All interventions
with victim that were attended by SDIS 25 centers with a VSAV and further transported to
hospitals were eligible for inclusion. These data covered the period of January 2006 to June
2020. The main attributes of these data are described in the following:

• ID is a unique identifier for each intervention;
• SDate is the “Starting Date” of the intervention, which represents the time SDIS 25

took charge of the intervention after processing the call;
• ADate is the “Arrival Date” of an ambulance on the emergency scene;
• Center is the SDIS 25 center from which the ambulance left;
• Location is the precise location (latitude, longitude) of the intervention;
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• Zone is either urban (Z1), semi-urban (Z2), or rural (Z3);
• City is the municipality where the intervention took place. A city may have zero or

more Districts.

Each ambulance represents one sample, i.e., a single intervention may have received
one or more ambulances. The ART variable was calculated as ART = ADate− SDate. We
excluded outlying observations with ART of less than 1 min and with ART of more than 45
min, which represented less than 1.4% of the original number of samples.

Using SDate, we have added temporal information such as: year, month, day, weekday,
hour, and categorical indicators to denote holidays, end/start of the month, and end/start
of the year. Moreover, with the exact coordinates from both Center and emergency’s Location,
we calculated the great-circle distance (https://en.wikipedia.org/wiki/Great-circle_dista
nce) to add as a feature, which is the shortest distance between two points on the surface
of a sphere. We used the great-circle distance since it is faster to be calculated than the
Geodesic distance and more accurate than the Euclidean distance. Moreover, we have
added the number of interventions in the past hour and the number of active interventions
in the current hour. As also remarked in the literature [3,10], the number of interventions
on previous hours might impact ART. In addition, external data that may affect ART were
gathered from the following sources:

• Bison-Futé [31] provides prediction of traffic level for the Doubs region as indicators
ranging from 1 (regular flow) to 4 (extremely difficult flow) per day. We added these
indicators according to SDate;

• Météo-France [32] supplies historical weather information such as precipitation, tem-
perature, wind speed, and gust speed. We added weather data per hour according
to SDate;

• OSRM API [33] gives the driving distance on the fastest route and its travel time
duration. This way, with the coordinates from both Center and emergency’s Location,
we added these two features, i.e., estimated travel time in minutes and driving distance
in kilometers (km), for each ambulance.

2.4. Data Analysis

After removing outlying observations, the dataset at our disposal has 186,130 dis-
patched ambulances from SDIS 25 centers that attended 182,700 EMS interventions. The
frequency on the number of dispatched ambulances per zone is 39.62% (Z1), 33.38% (Z2),
26.71% (Z3), and 0.29% (outside the Doubs region), respectively. Figure 1 illustrates the
distribution of our variable of interest, namely ART, via three histograms with bins of 1 min
for each zone within the Doubs region. One can notice that the ART distributions follow a
typical right-skewed distribution also observed in other works/countries [3,34,35]. The
mean and standard deviation (std) values for zones Z1, Z2, and Z3 are 8.79± 5.66 min,
11.43± 6.15 min, and 15.38± 6.41 min, respectively. SDIS 25 had about 79.52% of the time
ART ≤ 10 min on zone Z1, and had about 95.76% and 92.50% of the time ART ≤ 25 min
on zones Z2 and Z3, respectively.
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Figure 1. Distribution of the ART variable for zones Z1, Z2, and Z3, respectively.
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Figure 2 illustrates the total number of dispatched ambulances per hour (left-hand
plot) and the cumulative ART in hours per day of the week and hour in the day (right-hand
plot). One can notice that the total number of dispatched ambulances is notably related
to the hour in the day, i.e., there were more interventions in working periods rather than
between 0 h to 6 h. This behavior is also noticed in the works [12,35]. Moreover, as one
can notice with the right-hand plot of Figure 2, from 8 h in the morning on, the cumulative
ART starts to increase and remains high up to 19 h when it starts to decrease. Although this
high cumulative ART can be linked with the high hourly demand, ambulances dispatched
during working periods are also more likely to traffic congestion and, naturally, to undergo
through longer travel time. Secondly, due to the number of interventions in a given hour,
SDIS 25 centers may have taken more time to dispatch ambulances if their resources were in
use in other incidents. A slightly different profile can be seen on weekends, with noticeable
higher cumulative ARTs in the late night (0–6 h) and during some hours of the day too.
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Figure 2. Histogram of the total number of dispatched ambulances per hour in the day (left-hand
plot) and cumulative ART in hours per day of the week and hour in the day (right-hand plot).

Summary statistics per year and per zone are shown in Table 1. The metrics in this
table includes the total number of dispatched ambulances (Nb. Amb.), and descriptive
statistics such as mean and standard deviation (std) values for the ART variable. We
recall that for 2020, these statistics are up to June 2020 only. As also noticed in [7,8], the
number of interventions increases throughout the years. The year 2010 presented high
values in comparison with all other years, e.g., for Z1, the average ART was above the
10 min recommendation.

2.5. Preserving Emergency Location Privacy with Geo-Indistinguishability

To preserve the privacy of each emergency scene, we apply the polar Laplace mecha-
nism in Algorithm 1 to the Location attribute of each intervention. This means, even if our
dataset is per ambulance dispatch (i.e., 186,130 ambulances), we used the same sanitized
value per intervention (i.e., 182,700 unique interventions). Although in [15] the authors
propose two further steps to Algorithm 1, i.e., discretization and truncation, both steps can
be neglected in our context. This is, first, because SDIS 25 may also help other EMS outside
the Doubs region as we discussed in Section 2.2, and second, we assume that any location
in the continuous plane can be an emergency scene. Although reporting an approximate
location in the middle of a river may not have much sense in LBSs, in an emergency dataset
with approximate locations, this may indicate an urgency for someone who drowned in
the river, for example.

We used five different levels for the privacy budget ε = l/r, where l is the privacy
level we want within a radius r. Table 2 exhibits the five different levels of privacy.
For the sake of illustration, Figure 3 exhibits three maps of the Doubs region with the
points of original location (left-hand plot), ε = 0.005493-GI location (middle plot), and
ε = 0.002747-GI location (right-hand plot). As one can notice, with an intermediate privacy
level (l = ln (3), r = 400), locations are more spread throughout the map while with a
lower privacy level (l = ln (3), r = 200), locations approximate the real clusters.
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Table 1. Mean and std values for the ART variable and the total number of dispatched ambulances
(Nb. Amb.) per year in zones Z1, Z2, and Z3, respectively. For 2020, we only consider cases of the
first semester.

Year
Z1 Z2 Z3

Nb. Amb. Mean Std Nb. Amb. Mean Std Nb. Amb. Mean Std

2006 197 9.23 4.41 367 11.25 5.50 354 14.27 5.40

2007 236 7.39 3.05 671 10.79 5.04 595 14.35 5.52

2008 799 8.69 6.04 1055 11.19 5.32 911 14.53 6.02

2009 1363 8.76 6.05 2087 11.08 5.67 1872 14.94 6.46

2010 2643 10.08 7.23 2797 12.48 6.85 2483 16.01 7.22

2011 5971 8.26 5.61 4276 11.24 6.13 3295 14.50 6.25

2012 6078 8.66 5.89 4661 11.18 6.39 3602 14.86 6.24

2013 6780 8.82 5.72 5048 11.03 6.11 3972 15.07 6.30

2014 6847 8.37 5.23 5481 10.80 5.86 4240 14.91 6.34

2015 7226 8.46 5.50 5596 10.86 5.78 4643 15.02 6.12

2016 7510 8.50 5.35 6179 11.19 5.92 4861 15.32 6.35

2017 8650 8.76 5.32 7251 11.49 6.01 5523 15.51 6.36

2018 9051 8.90 5.46 7641 11.64 6.11 5956 15.59 6.23

2019 7030 9.42 6.02 6238 12.29 6.66 5016 16.60 6.88

2020 3397 9.73 5.87 2843 12.59 6.56 2449 16.46 6.44

With the new Location values of each intervention, we also reassigned the city, the
district, and the zone when applicable. In addition, we recalculated the following features
associated with it: the great-circle distance, the estimated driving distance, and estimated
travel time. The latter two features were recalculated with OSRM API, which only considers
roads, i.e., if the obfuscated location is in the middle of a farm, the closest route estimates
the driving distance and travel time until the closest road. We also highlight that if the
new coordinates of the emergency scene indicate a location closer to another SDIS 25
center, even in real life, it would not imply that this center took charge of the intervention.
Therefore, the center attribute was not ‘perturbed’.

Table 2. Values of ε = l/r for sanitizing emergency location data with GI.

ε = l/r l r (m)

0.005493 ln (3) 200

0.002747 ln (3) 400

0.001155 ln (2) 600

0.000866 ln (2) 800

0.000693 ln (2) 1000

To show the impact of the noise added to the Location attribute, Table 3 exhibits the
percentage of time that categorical attributes (zone, city, and district) were ‘perturbed’ (i.e.,
reassigned); the mean and std values of the great-circle distance attribute and its correlation
with the ART variable (Corr. ART). In Table 3, we report the mean(std) values since we
repeated our experiments with 10 different seeds (i.e., DP algorithms are randomized).
Although we did not include the estimated driving distance and estimated travel time
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from OSRM API in this analysis, in preliminary tests, we noticed that these two features
follow a similar pattern as the great-circle distance attribute.

Figure 3. Emergency locations and SDIS 25 centers throughout the Doubs region: original data
(left-hand plot), ε = 0.005493-GI data (middle plot), and ε = 0.002747-GI data (right-hand plot).

From Table 3, one can notice that many features are perturbed due to sanitization
of emergency’s location with GI. With high levels of ε (i.e., less private), the city and
the zone suffer low ‘perturbation’. On the other hand, district is reassigned many times
as it is geographically smaller than the others. When ε = 0.000866, the city is already
reassigned more than 50% of the time and the district about 75% of the time. Moreover,
one can notice that the mean and std values of the great-circle distance increase as the
ε parameter decreases (i.e., more private). Because ε = l/r, making l smaller and/or r
higher, the stricter ε becomes, and therefore more noise is added to the original locations.
Moreover, the correlation between the great-circle distance with the ART variable decreases
proportionally as ε becomes smaller.

Table 3. Percentage of perturbation for categorical attributes (city, zone, and district) according to ε and statistical properties
(mean and std values and correlation with ART) of the original and GI-based datasets for the great-circle distance attribute.
Mean(std) values are reported since we repeated our experiments with 10 different seeds.

Data
Zone City District Great-circle Dist. (km)

‘Perturbation’ (%) Mean std Corr. ART

Original - - - 3.44 3.72 0.369

ε = 0.005493 5.20 (0.05) 7.68 (0.06) 25.8 (0.05) 3.48 (1 × 10−3) 3.72 (7 × 10−4) 0.367 (2 × 10−4)

ε = 0.002747 11.3 (0.05) 17.6 (0.10) 41.5 (0.12) 3.57 (1 × 10−3) 3.72 (1 × 10−3) 0.362 (2 × 10−4)

ε = 0.001155 28.1 (0.06) 42.3 (0.10) 66.2 (0.09) 4.03 (3 × 10−3) 3.74 (3 × 10−3) 0.335 (5 × 10−4)

ε = 0.000866 35.5 (0.10) 52.4 (0.11) 74.0 (0.11) 4.38 (3 × 10−3) 3.81 (4 × 10−3) 0.313 (1 × 10−3)

ε = 0.000693 41.4 (0.12) 60.3 (0.09) 79.4 (0.05) 4.77 (6 × 10−3) 3.92 (5 × 10−3) 0.288 (1 × 10−3)

2.6. Machine-Learning Models

Four state-of-the-art ML techniques have been used in our experiments, to predict
the scalar ART outcome in a regression framework. More precisely, we compared the
performance of two state-of-the-art ML techniques based on decision trees, which are
known for their high performance (and speed) with tabular data; a traditional and well-
known neural network, and a classical statistical method that can perform both variable
selection and regularization. These methods are briefly described in the following:
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• Extreme Gradient Boosting (XGBoost) [36] is a decision-tree-based ensemble ML
algorithm that produces a forecast model based on an ensemble of weak forecast
models (decision trees). XGBoost uses a novel regularization approach over standard
gradient boosting machines, which significantly decreases model’s complexity. The
system is optimized by a quick parallel tree construction and adapted to be fault-
tolerant under distributed environments.

• Light Gradient Boosted Machine (LGBM) [37] is a novel gradient boosting frame-
work, which implemented a leaf-wise strategy. This strategy significantly reduces
computational speed and resource consumption in comparison to other decision-tree-
based algorithms.

• Multilayer Perceptron (MLP) is an artificial neural network of the feedforward type [38].
These algorithms are based on the interconnection of several units (neurons) to trans-
mit signals, which are normally structured into three or more layers, input, hidden(s),
and output. We used the Keras library [39] to implement our deep learning models.

• Least Absolute Shrinkage and Selection Operator (LASSO), a method of contracting
the coefficients of the regression, whose ability to select a subset of variables is due
to the nature of the constraint on the coefficients. Originally proposed by Tibshi-
rani [40] for models using the standard least squares estimator, it has been extended
to many statistical models such as generalized linear models, etc. We used the LASSO
implementation from the Scikit-learn library [41].

2.7. Experiments

All algorithms were implemented in Python 3.8.8. To run our codes, we used a
machine with Intel (R) Core (TM) i7-10750 CPU @ 2.60 GHz, 16 GB RAM, and a GPU with
1920 cores and 6 GB of RAM using Windows 10. Because in Table 3 there are low variations
(i.e., small std values) on all features that depend on the sanitized location, we ran our
experimental validation only once. In our experiments, each sample corresponds to one
ambulance dispatch, in which we included temporal features (e.g., hour, day), weather data
(e.g., pressure, temperature), traffic data, the emergency’s location (latitude and longitude
in radians), and computable features (e.g., distance, travel time). The scalar target variable
is the ART in minutes, which is the time measured from the EMS notification to the
ambulance’s arrival on-scene. All numerical features (e.g., temperature) were standardized
using the StandardScaler function from the Scikit-Learn library. Categorical features (e.g.,
center, zone, hour) were encoded using mean encoding, i.e., the mean value of the ART
variable with respect to each feature. The target variable, namely ART, was kept in its
original format (minutes) since no remarkable improvement was achieved with scaling.

Our experimentation considers the scenario in which EMS would perform both the
sanitization of the dataset and the development of ML models. In this case, the objective is
to have all ML models to be trained with ε-GI data to prevent, for example, membership
inference attacks and data reconstruction attacks [18,19]. This also means that ML models
will be trained with sanitized data and the testing set will use original data, as it would
be if EMS deployed a decision-support system in real life. On the one hand, this would
prevent having in real-life a sanitized location that would compromise the EMS response
time. On the other hand, each time the model is re-fitted (or retrained), the new known data
should also be sanitized with ε-GI. A different scenario could consider that both training
and testing sets are sanitized, which corresponds to the case where EMS published the data
openly or transmitted it to an untrusted party. This latter scenario was out of the scope of
this paper and, thus, is left as future work.

With these elements in mind, we divided our dataset into training (years 2006–2019)
and testing (six months of 2020) sets to evaluate our models. Thus, five models per ML
technique (i.e., XGBoost, LGBM, MLP, and LASSO) were built to predict ART on each
month of 2020 using the sanitized (training) datasets with different levels of ε-GI location
data (cf. Table 2). All models were trained continuously, i.e., at the end of each month,
the new known data were added to the training set after sanitization with ε-GI. Lastly, all
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models were tested with original data. In addition, for comparison, we also trained and
evaluated one additional model per ML technique with original data. In this paper, the
models were evaluated using the following regression metrics:

• Root mean squared error (RMSE) measures the square root average of the squares of

the errors and is calculated as: RMSE = 1
n

√
∑n

i=1(yi − ŷi)
2;

• Mean absolute error (MAE) measures the averaged absolute difference between real
and predicted values and is calculated as: MAE = 1

n ∑n
i=1 |yi − ŷi|;

• Mean absolute percentage error (MAPE) measures how far the model’s predictions
are off from their corresponding outputs on average and is calculated as: MAPE =
1
n ∑n

i=1

∣∣∣ yi−ŷi
yi

∣∣∣ · 100%;

• Coefficient of determination (R2) measures the proportion of the variance in the
dependent variable that is predictable from the independent variable(s). An R2 = 1
would indicate a model that fully captures the variation in ARTs;

in which yi is the real output, ŷi is the predicted output, and n is the total number of
samples, for i ∈ [1, n]. Results for each metric were calculated using data from the 6 months
evaluation period. The RMSE metric was also used during the hyperparameters tuning
process via Bayesian optimization (BO). To this end, we used the HYPEROPT library [42]
with 100 iterations for each model. Table A1 in Appendix A displays the range of each
hyperparameter used in the BO, as well as the final configuration used to train and test
the models.

3. Results and Discussion

In this section, we present the results of our experimental validation (Section 3.1) and
a general discussion (Section 3.2) including related work and limitations.

3.1. Privacy-Preserving ART Prediction

Figure 4 illustrates the impact of the level of GI for each ML model to predict ART
according to each metric. As one can notice in this figure, for XGBoost, LGBM, and
LASSO, there were minor differences between training models with original location data
or sanitized ones. On the other hand, models trained with MLP performed poorly with
GI-based data. In addition, by analyzing models trained with original data, while the
smaller RMSE for LASSO is about 5.65, for more complex ML-based models, RMSE is
less than 5.6, achieving 5.54 with XGBoost and LGBM. In comparison with the results
of existing literature, lower R2 scores and similar RMSE and MAE results were achieved
in [11] to predict ART while using original location data only. With more details, Table A2
in Appendix A numerically exhibits the results from Figure 4.

Indeed, among the four tested models, LGBM and XGBoost achieve similar metric
results while favoring the LGBM model. Thus, Figure 5 illustrates the BO iterative process
for LGBM models trained with original and sanitized data according to the RMSE metric
(left-hand plot); and ART prediction results for 50 dispatched ambulances in 2020 out of
8709 ones (right-hand plot) with an LGBM model trained with original data (Pred: original)
and with two LGBM models trained sanitized data, i.e., with ε = 0.005493 (low privacy
level) and with ε = 0.000693 (high privacy level).

As one can notice in the left-hand plot of Figure 5, once data are sanitized with
different levels of ε-GI, the hyperparameters optimization via BO is also perturbed. This
way, local minimums were achieved in different steps of the BO (i.e., the last marker per
curve indicates the local minimum). For instance, even though ε = 0.002747 is stricter
than ε = 0.005493, results were still better for the former since, in the last steps of BO,
three better local minimums were found. Moreover, prospective predictions were achieved
with either original or sanitized data. For instance, in the right-hand plot of Figure 5,
even for the high peak-value of ART around 40 min, LGBM’s prediction achieved some
reasonable estimation. Although several features were perturbed due to the sanitization of
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the emergency scene (e.g., city, zone, etc.), the models could still achieve similar predictions
as the model trained with original location data.
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Figure 4. Impact of the level of ε-geo-indistinguishability for each ML model to predict ART according
to each metric.
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Figure 5. The left-hand plot illustrates the hyperparameters tuning process via Bayesian optimization
with 100 iterations for LGBM models trained with original data and sanitized ones. The right-hand
plot illustrates the prediction of ARTs with LGBM models trained with original data and with
sanitized ones.

Furthermore, in terms of training time, for both original and sanitized datasets, the
LASSO method was the fastest to fit our data. On the other hand, MLP models took the
longest time to execute than all other methods. Between both decision-tree methods, LGBM
models were faster than XGBoost ones. Lastly, the importance of the features, taking into
account LASSO coefficients and decision trees’ importance scores were: averaged ART
per categorical features (e.g., center, city, hour); OSRM API-based features (i.e., estimated
driving distance and estimated travel time); the great-circle distance between the center and
the emergency scene; the number of interventions in the previous hour, and the number of
interventions still active. Immediately thereafter, it appeared the weather data, which were
added as “real-time” features, i.e., using the date of the intervention to retrieve the features.
Penultimate, the traffic data, which are indicators provided by [31] at the beginning of each
year and, which might have shown more influence if they had been retrieved in real time.
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Finally, it appeared some temporal variables such as weekend indicators, start/end of the
month, and the day of the year.

3.2. Discussion

The medical literature has mainly focused attention on the analysis of ART [3,34,43]
and its association with trauma [2,30] and cardiac arrest [1,4,6], for example. To re-
duce ART, some works propose reallocation of ambulances [5,44], operation demand
forecasting [5,7,8,22,45], travel time prediction [12], simulation models [35,46], and EMS re-
sponse time predictions [11,12]. The work in [11] propose a real-time system for predicting
ARTs for the San Francisco fire department, which closely relates to this paper. The authors
processed about 4.5 million EMS calls using original location data to predict ART using
four ML models, namely linear regression, linear regression with elastic net regularization,
decision-tree regression, and random forest. However, no privacy-preserving experiment
was performed because the main objective of their paper was proposing a scalable, ML-
based, and real-time system for predicting ART. Besides, we also included weather data
that the authors in [11] did not consider in their system, which could help to recognize
high ARTs due to bad weather conditions, for example.

Currently, many private and public organizations collect and analyze data about
their associates, customers, and patients. Because most of these data are personal and
confidential (e.g., location), there is a need for privacy-preserving techniques for processing
and using these data. Location privacy is an emergency research topic [13,14] due to
the ubiquity of LBSs. Within our context, using and/or sharing the exact location of an
emergency raises many privacy issues. For instance, the Seattle Fire Department [47]
displays live EMS response information with the precise location and reason for the
incident. Although the intention of some fire departments [11,47] is laudable, there are
many ways for (mis)using this information, which can jeopardize users’ privacy. Even if
the intervention’s reason could be an indicator of the call urgency, we did not consider this
sensitive attribute in our data analysis nor privacy-preserving prediction models. This is
because, for SDIS 25, the ARTs limits are defined by the zone [9]. Additionally, we also
did not include the victims’ personal data (e.g., gender, age) in our predictions or analysis
since, during the calls, the operator may not acquire such information, e.g., when a third
party activates the SDIS 25 for unidentified victims. This way, we focused our attention on
the location privacy of each intervention.

To address location privacy, the authors in [15] proposed the concept of GI, which
is based on a generalization [29] of the state-of-the-art DP [16] model. As highlighted
in [15], attackers in LSBs may have side information about the user’s reported location,
e.g., knowing that the user is probably visiting the Eiffel Tower instead of swimming in
the Seine river. However, this does not apply in our context because someone may have
drowned, and EMS had to intervene. Similarly, even for the dataset with intermediate
(and high) privacy in which locations are spread out in the Doubs region (cf. map with
0.005493-GI location in Figure 3), someone may have been lost in the forest and EMS
would have to interfere. For these reasons, using (or sharing datasets with) approximate
emergency locations (e.g., sanitized with GI) is a prospective direction since many locations
are possible emergency scenes. Indeed, we are not interested in hiding the emergency’s
location completely since some approximate information is required to retrieve other
features (e.g., city, zone, estimated distance) to use for predicting ART.

Moreover, learning and extracting meaningful patterns from data, e.g., through ML,
play a key role in advancing and understanding several behaviors. However, on the one
hand, storing and/or sharing original personal data with trusted curators may still lead to
data breaches [48] and/or misuse of data, which compromises users’ privacy. On the other
hand, training ML models with original data can also leak private information. For instance,
in [18] the authors evaluate how some models can memorize sensitive information from
the training data, and in [19], the authors investigate how ML models are susceptible to
membership inference attacks. To address these problems, some works [7,20–25,49] propose
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to train ML models with sanitized data, which is also known as input perturbation [26] in
the privacy-preserving ML literature.

Input perturbation-based ML and GI are linked directly with local DP [26] in which
each sample is sanitized independently, either by the user during the data collection process
or by the trusted curator, which aims to preserve privacy of each data sample. This way,
data are protected from data leakage and are more difficult to reconstruct, for example.
In [23,49], the authors investigate how input perturbation through applying controlled
Gaussian noise on data samples can guarantee (ε, δ)-DP on the final ML model. This
means, since ML models are trained with perturbed data, there is a perturbation on the
gradient and on the final parameters of the model too.

In this paper, rather than Gaussian noise, the emergency scenes were sanitized with
Algorithm 1, i.e., adding two-dimensional Laplacian noise centered at the exact user
location x ∈ R2. In addition, this sanitization also perturbs other associated and calculated
features such as: city, district, zone (e.g., urban or not), great-circle distance, estimated
driving distance, and estimated travel time (cf. Table 3). As well as the optimization of
hyperparameters, i.e., once data are differentially private, one can apply any function on
it and, therefore, we also noticed perturbation on the BO procedure. Yet, as shown in
the results, prospective ART predictions were achieved with either original or sanitized
data. Furthermore, even with a high level of sanitization (ε = 0.000693) there was a good
privacy-utility trade-off. According to [50], if the mean absolute percentage error (i.e.,
MAPE) is greater than 20% and less than 50%, the forecast is reasonable, which is the
results we have in this paper with MAPE around 30%.

Lastly, some limitations of this work are described in the following. We analyzed
ARTs using the data and operation procedures of only one EMS in France, namely SDIS
25. Although it may represent a sufficient number of samples, other public and private
organizations are also responsible for EMS calls, e.g., the SAMU (Urgent Medical Aid
Service in English) analyzed in [46]. Moreover, there is the possibility of human error when
using the mechanical system to report (i.e., record) the arrival on-scene time “ADate”. For
instance, the crew may have forgotten to record status on arrival and may have registered
later, or conversely, where the crew may have accidentally recorded before arriving at the
location. Additionally, it is noteworthy to mention that the arrival on-scene does not mean
arriving at the victim’s side, e.g., in some cases the real location of a victim is at the n-th
stage of a building as investigated in [43].

4. Conclusions

In the event of an acute medical event such as a respiratory crisis or cardio-respiratory
arrest, the time an ambulance takes to arrive on-scene has a direct impact on the quality of
service provided. Ambulance response time is a fundamental indicator of the effectiveness
of EMS systems [1,2,4–6,30]. For this reason, an intelligent decision-support system is
necessary to help minimize overall EMS response times. The present work first analyzes
historical records of ARTs to find correlations between their extracted features and explain
the trends through the 15 years of collected data. Then, we sought to predict the response
time that each center equipped with ambulances had to an event, but not only that, because
we also consider that the ML models could be subject to attacks, which would compromise
the victims’ privacy. Therefore, the joint work aimed to evaluate the effectiveness of
predicting ARTs with ML models trained over sanitized location data with different levels
of ε-geo-indistinguishability. As shown in the results, the sanitization of location data
and the perturbation of its associated features (e.g., city, distance) had no considerable
impact on predicting ART. With these findings, EMS may prefer using and/or sharing
sanitized datasets to avoid possible data leakages, membership inference attacks, or data
reconstructions, for example.

For future work, we aim to extend the analysis and predictions to different operation
times such as the pre-travel delay (i.e., gathering personnel and ambulances) and travel
times (e.g., from the center to the emergency scene, from the emergency scene to hospitals),
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while respecting users’ privacy. In addition, new variables will be added such as the
number of dispatched ambulances registered in a previous or current time, and the number
of ambulances and firefighters available in each center at a given time, given that while
there are few resources available, ART may be longer. Indeed, the aim is to build an
intelligent system capable of predicting ARTs while respecting victims’ privacy. This way,
this system would allow reinforcing SDIS 25 centers with the necessary firefighters to attend
incidents faster; to create a new center according to the concurrence and high average ARTs
for a given area; as well as to convert a static resource deployment plan into a dynamic one,
which would be based on the selection of the center with shorter response times taking
into account the community the emergency took place, traffic and weather conditions, and
so on. Lastly, we would like to evaluate, in practice, the trade-off between such an ART
prediction decision-support system with the victims’ privacy, on using ε-GI location data.
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Appendix A. Complementary Results

Table A1. Search space for hyperparameters by ML model and the best configuration obtained for predicting ARTs
per dataset.

Model Search Space Best Configuration per Dataset
Original ε = 0.005493 ε = 0.002747 ε = 0.001155 ε = 0.000866 ε = 0.000693

XGBoost

max_depth: [1, 10] 9 9 6 6 9 9
n_estimators: [50, 500] 465 465 130 235 465 465

learning_rate: [0.001, 0.5] 0.0265 0.0265 0.0858 0.0486 0.0265 0.0265
min_child_weight: [1, 10] 5 5 7 7 5 5

max_delta_step: [1, 11] 4 4 3 4 4 4
gamma: [0.5, 5] 3 3 0 2 3 3

subsample: [0.5, 1] 0.8 0.8 1 1 0.8 0.8
colsample_bytree: [0.5, 1] 0.5 0.5 0.5 0.5 0.5 0.5

alpha: [0, 5] 2 2 1 2 2 2

LGBM

max_depth: [1, 10] 7 8 10 8 8 6
n_estimators: [50, 500] 355 326 477 250 80 441

learning_rate: [1 × 10−4, 0.5] 0.0188 0.0098 0.0164 0.0285 0.0586 0.0300
subsample: [0.5, 1] 0.54066 0.5228 0.6138 0.6699 0.6732 0.5812

colsample_bytree: [0.5, 1] 0.5160 0.5575 0.5204 0.6870 0.5507 0.5451
num_leaves: [31, 400] 400 192 245 398 132 95

reg_alpha: [0, 5] 4 0 5 0 1 4

MLP

Dense layers: [1, 7] 7 3 4 6 6 6
Number of neurons: [28, 213] 210 212 212 29 212 29

Batch size: [32, 168] 140 80 48 82 70 44
Learning rate: [1× 10−5, 0.01] 0.00265 0.00124 0.0099 0.0099 0.0094 0.0077

Optimizer: Adam Adam Adam Adam Adam Adam Adam
Epochs: 100 100 100 100 100 100 100

Early stopping: 10 10 10 10 10 10 10

LASSO alpha: [0.01, 2] 0.0205 0.0307 0.0105 0.0100 0.0112 0.0107

Table A2. Metrics results for each ML model trained with original data and sanitized ones.

Data Metric XGBoost LGBM MLP LASSO

Original

RMSE 5.5398 5.5427 5.5916 5.6511

MAE 3.4286 3.3880 3.5623 3.4760

MAPE 30.114 29.476 31.867 30.260

R2 0.3412 0.3405 0.3289 0.3145

ε = 0.005493

RMSE 5.5547 5.5544 5.6401 5.6596

MAE 3.4515 3.3915 3.5773 3.4960

MAPE 30.432 29.628 32.307 30.571

R2 0.3377 0.3378 0.3172 0.3124

ε = 0.002747

RMSE 5.5617 5.5536 5.6959 5.6636

MAE 3.4430 3.4628 3.6357 3.4991

MAPE 30.364 30.688 32.687 30.606

R2 0.3360 0.3379 0.3036 0.3115

ε = 0.001155

RMSE 5.5788 5.5867 5.8184 5.6671

MAE 3.4803 3.4991 3.8550 3.5094

MAPE 31.097 31.327 35.704 30.835

R2 0.3319 0.3300 0.2733 0.3106

ε = 0.000866

RMSE 5.5892 5.5885 5.8575 5.6716

MAE 3.5033 3.4702 3.8736 3.5134

MAPE 31.515 30.964 35.810 30.907

R2 0.3295 0.3296 0.2635 0.3095

ε = 0.000693

RMSE 5.5962 5.5978 6.0463 5.6717

MAE 3.5119 3.5087 3.9704 3.5171

MAPE 31.638 31.543 36.122 31.007

R2 0.3278 0.3274 0.2153 0.3095
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